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A Foucault pendulum may be maintained indefinitely by parametric 
excitation, but as a consequence of imperfections in its construction, 
seismic noise and other perturbations it is liable to precess a t  other than 
the ideal rate. It has been suggested by Braginsky et al. (Phys. Rev. Lett. 
53, 863 (1984)) that  the disturbing factors might be reduced to such an 
extent that the Thirring-Lense effect of General Relativity could be 
verified. The present analysis reveals serious problems in addition to 
those they considered, but indicates how parametric excitation helps to 
overcome them. Nevertheless their assessment of the chance of success 
reflects an optimism that the present author cannot share. 

INTRODUCTION 

The Foucault pendulum has been the topic of so many reports since its 
demonstration (Foucault 1851) attracted the cultivated and the fashionable of 
Paris, that its interest might be thought exhausted. Nevertheless the demands of 
museums and other public places have continued to stimulate ingenious new 
methods of maintaining the oscillations without disturbing the precessional rate, 
and it has further been suggested (Braginsky, Polnarev & Thorne 1984; henceforth 
B.P.T.) that it might not be out of the question to verify by its means the 
Thirring-Lense (1918; T.L.) effect predicted by General Relativity. Both these 
motivations underlie the work described here, which extends the searching 
analysis by B.P.T. of the potential sources of error. Little will be said about a 
model constructed by the author to test the behaviour of a parametrically 
maintained pendulum, except in illustration of theoretical points. No model built 
yet has achieved anything approaching the precision demanded by the T.L. effect. 
This effect, referred to by B.P.T. as the gravitomagnetic effect, is a dragging round 
of the inertial frame with respect to that defined by the distant stars, as a result 
of the Earth's rotation; theoretically it amounts to 0.22" per year, i.e. 6 x 10-lo of 
the Earth's rotational speed. There is an enormous hiatus between a convincing 
museum demonstration of the Earth's rotation and a test of General Relativity. 

The perennial bugbear of Foucault pendulums is their tendency to develop an 
elliptical orbit, which, as a consequence of anharmonicity of the restoring force, 
gives rise to an intrinsic precession that may easily overwhelm the Foucault 
precession. The popular way of controlling ellipticity is the Charron ring (193 1; 
but see also Whittle 1887). Although effective, its demerit is that it relies on 
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friction, an unacceptable feature if high precision is demanded. Parametric 
excitation also acts against the development of ellipticity, without disturbing the 
Foucault precession. It has been used before (Whittle 1887; Baker 1932) but not, 
it seems, analysed in any detail. 

The support from which the pendulum is hung is vibrated in a vertical direction 
a t  twice the pendulum frequency, with the phase controlled so that the support 
rises a t  its maximum speed as the pendulum passes through the centre of its swing, 
when the tension of the wire is greatest; it falls a t  its maximum speed a t  the ends 
of the swing when the tension is least. Thus there is a steady input of energy to 
compensate dissipative losses. If the pendulum develops an elliptical trajectory, 
the vibration normal to the principal motion is in phase quadrature with it, and 
is attenuated rather than amplified by the parametric process (Pippard 1978). The 
minor axis, and the consequent unwanted precession, are in this way reduced 
considerably below what they would be for the uncontrolled pendulum. 

An imperfect Foucault pendulum must approximate closely to an ideal 
spherical pendulum, executing simple harmonic motion, if it is to work even 
moderately well. This allows the imperfections to be discussed by a peculiarly 
simple perturbation treatment. For a perfect harmonic oscillator has the unique 
property that  the action of a number of perturbing forces is the sum of their 
actions as if each alone were present. This means that the effect of each 
imperfection can be tre&ted separately; if they are small enough that first-order 
processes are all that need be considered, even imperfections that produce 
nonlinearity can be so included. The first stage of the analysis is therefore to 
establish a rather general method of treating imperfections, which will then be 
applied to a number of speciai cases. 

PERTURBATIONO F  A N  I S O T R O P I C  T W O - D I M E N S I O N A L  

H A R M O N I C  V I B R A T O R  

An ideal loss-free vibrator, of mass m, subject to a synchronized perturbing 
force in its plane, is systematically affected only by the fundamental component. 
Let it initially move clockwise in a narrow elliptical orbit with the major axis 
along x, so that its unperturbed coordinates (x,, yo) vary as 

x,=acoswt and y o = - b s i n w t ( b < a ) ,  ( 1 )  

and let the fundamental component of the perturbing force be resolved into 
components as follows : 

Fa, cos wt +Fa, sin wt along the major axis, 

and Fb,cos wt +Fb,sin wt along the minor axis. 

After one cycle the perturbations of the motion have the form 

Ax, = (n/mw2)(Fa,sin wt -Fa,cos wt)  

and Ay, = (n/mw2)(Fb,sin wt  -Fb, cos wt) .  
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When these perturbations are added to xo and yo the resulting components along 
the x and y axes are no longer in phase-quadrature. To determine the orientation 
of the new ellipse, rotate the axes clockwise through a small angle y, such that  the 
resulting x and y components are once more in quadrature. The rotation produces 
changes, to first order in 7, 

Ax, = yb sin wt and Ay, = ya cos wt. 

The perturbed oscillation is described, relative to the new axes, by 

x = (a-hF,,) cos wt + (hFa,+yb) sin wt 

and y =- (b-hFb,) sin wt + (ya- hFb,) cos wt, where h = x/mw2.1 
If these are to be in quadrature, 

after neglect of second-order terms. This is the angle through which the principal 
axis is caused to precess in one cycle of oscillation. The clockwise precessional 
angular velocity SZ, may therefore be written 

where s is the ellipticity, bla. 
The development of s also follows from (2) : 

6 = (ab-ba)/a2 = -(Fb,-sFas)/2mwa. (4) 

T H E  I M P E R F E C T  M A I N T A I N E D  P E N D U L U MFOUCAULT 

The Coriolis force responsible for Foucault precession is normal to, and in phase 
with, the velocity of the pendulum. It is therefore described by Fbs= 2mSZwa, 
where SZ is the vertical component of the Earth's angular velocity a t  the latitude 
of the experiment. From (3) it is responsible for the ideal precessional rate 
52, = SZ, which is clockwise (positive) in the Northern Hemisphere. The pendulum 
is, however, never perfectly isotropic and the resulting elliptical motion with its 
consequent precession must be allowed for. In  addition, damping due to air 
resistance and other dissipative effects must be compensated by parametric 
amplification. All these processes must be included in the equation of motion, and 
will be derived separately. 

(a) Anisotropy 

I n  the absence of the Coriolis force the pendulum has two orthogonal principal 
planes, fixed in the laboratory, in which linear vibrations persist. If the plane of 
slower vibration, a t  frequency w -8, is taken as the reference plane from which the 
orientation 8 of the major axis is measured clockwise, and if the faster vibration 
has frequency w +8, the restoring force coefficients along the principal axes are 
mw2(1f:28/w). The force components along the principal axes are 

along the slow axis, -mw2(1 -28/w) (a  cos 8 cos wt -b sin 8 sin wt) ; 

along the fast axis, mw2(1+28/w) (b cos 8 sin wt +a sin 8 cos wt). 
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Hence, after resolving along the principal axes of the ellipse, the perturbing forces 
take the form 

Fa, = 2mwSa cos 28, Fa, = -2mwcYb sin 28, 

Fbc= 2mwSa sin 28, F,, = 2mwcYb cos 28. 

I t  follows from (3 )and (4) that 

0, = 2Se cos 28 and z-S sin 28. ( 5 )  

(b)  Anharmonicity 

The projection of the pendulum bob onto a horizontal plane behaves as an 
anharmonic two-dimensional vibrator. Let the excitation energy be E and the 
momentary horizontal displacement r so that, to second order in r, the kinetic 
energy &nu2is E-mgr2/21, 1 being the length of the pendulum and v the velocity 
of the bob itself, independent of its direction of motion. The centripetal 
acceleration v2/1, towards the point of suspension, is caused by the difference 
between T, the tension in the wire, and mg(1 -r2/212), the component of weight 
acting along the wire, also to  second order in r. Therefore 

The first two terms generate a harmonic restoring force in the horizontal plane 
and the last an anharmonic central repulsive force F' = (3mgr2/2P)r . For motion 
according to ( 1 )this force has components 

F' = (3mg/2P) (a2 cos2wt +b2sin2wt) (a  cos wt, -b sin wt), 

of which only the fundament& Fourier coefficients concern us. Thus 

and Fb,=- (3mg/213) (aa2b +$b3), 


from which the standard expression (Olsson 1978) follows, by use of ( 3 ) ,with 

g/l = w2, 

0, x ce, where c = 3wa2/8Z2, (7 )  


and 6 = 0. The sense of precession is the same as that of the orbital motion. 


( c )  Dissipation 

In  the steady state, a is maintained very nearly constant by parametric 
amplification, whereas b is always small. The dissipation, even if nonlinear, may 
be represented well enough by introducing separate effective relaxation times for 
the major and minor axes, such that  without amplification 

ci = -a/ra and b = -b/r,. (8) 

( d )  Parametric amplification 

Let the pendulum support vibrate vertically a t  twice the pendulum frequency, 
with upward displacement -P  sin (2wt+#). Ideally # is made to vanish, but it is 
retained so that the effect of maladjustment can be estimated. If the pendulum 
displacement is small the vertical acceleration of the support, carrying the bob 
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with it, increases the tension in the wire by 4mw2Psin (2wt+q5). The resultant 
horizontal perturbing force is central, with components 

F' = (4mw2P/l)sin (2wt+ q5)  ( - a  cos wt, b  sin wt). 

As with the anharmonic perturbation, only the fundamental component concerns 

Fh,= A a  sin q5, Pi,= Aa  cos q5, 

FL,= -Ab cos q5, FA,= Ab sin q5, 

where A = 2mw2P/1. Hence, from ( 3 )and ( 4 )  

52, = - (2w/3s/l)sin q5 

and i. = - (2wpe/l)cos q5. 

The decrement of s,  with effective time constant 7,  such that 1/rP= (2wPll)cos q5, 
is the resultant of a decrement of b and an increment of a ,  both with time 
constant 27,. If the amplification is adjusted, as assumed in what follows, so that  
q5 = 0 and w/3/l= l / r , ,  the major axis is maintained a t  constant length while the 
minor axis suffers decrement a t  the enhanced rate. The effective time constant for 
b, and hence for e is T' ,  where 

1/7' = 1/7,+ l / r p  (11)  

When q5 = 0, or for all q5 if e = 0, ( 9 )shows that parametric amplification does not 
affect the rate of precession. At the worst, maladjustment of q5 only modifies to a 
minor extent any existing error in precessional rate. 

EQUATION M O T I O NO F  

The results expressed by ( 5 ) ,(7) ,(9)and (11)may be combined into equations of 
motion for 8 and e, 8 being the sum of the basic Foucault precession rate 1;2 and 
all perturbations 52, : 

8= 52+4 2 8  cos 28 +c ) ,  (12)  

and i. = -8 sin28-E/T'.  (13)  

It follows that  
de/dO = - ( p sin 28+ y e ) / ( l  +2,ue cos 28+ as ) ,  (14)  

where p = S/O,  a = C / O  and y = 1/1;2~'. 

Only in a very poorly adjusted pendulum will the precession rates due to 
anisotropy (as represented by p )  and anharmonicity ( a )cause a major disturbance 
to the Foucault precession, and it should be a good first approximation to put the 
denominator in (14) equal to unity when determining how e varies with 8. If 
necessary, successive approximations can then be evaluated, but this will not be 
done here. With this simplification the steady-state solution of (14)can be written 
down immediately : 

s = [ - , ~ / ( 4 + ~ ~ ) : ]  where tang = 2 / y  = 2527'. (15)sin(28-g) ,  
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The advantage of parametric amplification is clear in the coefficient defining the 
magnitude of e. A pendulum at  the latitude of Cambridge makes one revolution in 
30.29 h ;  in the model 7' is 40 min, y - 7 . 2and the maximum size of the minor axis 
is, according to ( 15 ) ,less by a factor of 3.7 than without amplification. 

When (15)is substituted in ( 12 ) ,rearrangement gives 

0 / Q  = 1 + 2 p 2 / ( 4 +  y 2 )  +a p  sin ( 2 0 - < ) / ( 4+y2) : -p2  sin ( 4 0 - < ) / ( 4+y2):,  (16)  

of which the last term may be neglected without great error, because p is normally 
much less than a .  The precession rate is slightly increased by the second term 
and modulated by the third. Now a modulated rotational speed of the form 
Q,  +Q2 sin (no)gives rise to a mean speed of (0;-0;);.To second order in p, 
then, which is as much as is justified by the approximations made so far, the 
mean rate of precession, a,follows from ( 1 6 ) :  

The anisotropy, represented by p, has a primary consequence of increasing a. 
This can be understood by analogy with a pair of coupled vibrators, whose normal 
modes are closest in frequency, for a given coupling constant, when the vibrators 
are exactfy tuned together: mistuning separates the modes and increases their 
beat frequency, of which the precessional rate is the analogue here. The secondary 
effect of p is to modulate the speed through the anharmonicity, and this always 
decreases G. In the piesent case the two effects cancel when a = 2 ,  or when 
al l  = 4 / ( 3 ~ ) : ,N being the number of complete vibrations of the pendulum 
during one cycle of precession. In  the model I = 8.5 m, N - 18700 and thus 
a - 14 cm for cancellation. . 

At the larger amplitudes usual for demonstration pendulums the anharmonicity 
easily dominates, having an effect proportional to a4, and the precession rate is 
reduced. For example, a t  an operating amplitude a = & I ,  $2 = 31.5, so that  
a/9- 1-1. l p 2 .  For the error to be less than 1 %, p must be less than 0.1 and 6 
less than 5 x 10-6w. Because w cc I - ; ,  the difference between the values of 1 in the 
principal planes must be less than 2 x 10-51, or 0.17 mm, which does not seem an 
excessively severe demand. 

To study the T.L. effect, however, an improvement over this by a t  least a factor 
of 101° is needed, and I must be the same in the principal planes to better than 
1.7 nm. This poses a very difficult problem, not perhaps to provide adjustments 
that  enable high isotropy to be achieved, but because of the difficulty of 
maintaining the adjustment over the prolonged period needed for a measurement. 
This is but one of the obstacles to achieving the precision required for T.L., many 
of which have been outlined by B.P.T. In  the following section some of these are -
examined in somewhat more detail, and the catalogue further enlarged. 

SOURCES E R R O RO F  

( a ) T h e  suspension 

If we leave aside, as too-little developed for assessment, superconducting 
levitation of the pivot, the available suspensions are of three types :needle or ball, 
gimbal and flexible rod. With needles and small balls the contact area is apt  to 
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wear, and the use of gimbals can spread the load, especially with the crossed 
cylinder arrangement of Longden (1919). I t  is almost impossible, however, to 
avoid elastic hysteresis and rolling friction in any of these arrangements. 
Consequently no potential function can be defined for the pendulum and the 
lagrangian theory of normal modes is inapplicable. It is not difficult to show (as 
will not be done here) that hysteresis in a gimbal mounting causes extra precession 
of alternating sign in successive octants of the precession cycle, and this, as in 
(16), perturbs O.In  addition to this, in a gimbal one pair of pivots, or knife edges, 
supports the anvils on which the second pair rest. Any deformation of the second 
pair is likely to change the effective pendulum length for vibration in both planes, 
but deformation of the first pair changes the length only for its own plane of 
vibration. For this reason gimbals cannot be relied on to maintain their initial fine 
tuning. I t  is indeed unlikely that any mechanical pivot can be devised to meet the 
stringent conditions demanded by T.L. 

The materials problem presented by a flexing wire support is well known to any 
who have attempted to reproduce Foucault's original demonstration, hanging a 
heavy bob on a steel wire that is clamped or soldered to a boss a t  the top; it is not 
long, usually, before fatigue causes the wire to break a t  its point of emergence from 
the boss. This is an extreme example of the conditions endured by a rod that is 
longitudinally loaded while each filament is subjected to a pattern of severe 
alternating strain: a pattern most conducive to creep. The severity of the strain 
is reduced, as indicated below, by using a thicker wire or rod as the flexing 
member, but one must do more than avoid the risk of fracture ; if creep occurs, it 
cannot be relied on to maintain t'he isotropy of the suspension, and one should aim 
a t  choosing the material and dimensions so that creep causes no change of 
pendulum frequency as great i s  the allowed'value of S in ( 5 ) .  

The theory of flexure of a rod with one fixed end, under a steady tension and a 
transverse force a t  its free end, is well known. If the rod is infinitely long it remains 
straight except near the top ( f ;  = 0). The lateral displacement a t  a point f ;  below 
this has the form C(h[+e-At- 1)where C is a constant and h2 = 4mq/zEp4, E being 
Young's modulus and p the radius of the rod. The maximum curvature is Ch2 and 
the maximum strain of any filament Ch2p. At the furthest extent of the 
pendulum's displacement ([ = l), Chl z a if hl % 1, and the maximum strain is 
(2alpl) (mg/.n~);. Although no data are available that  relate to the extremely slow 
creep rates that are tolerable, one may guess from published curves (Frost & 
Ashby 1982) that a strain of could be permitted in tungsten. The rod diameter 
for a pendulum 8.5 m long, when the amplitude is the optimal 14 em, must be not 
less than 1.8mi mm (m in kilograms), and the length needed is several times A-l, 
which for this diameter is 0.27mi m. Provided the bob is not more than a few 
kilograms in mass the requirements can be met. An oriented carbon-fibre 
composite might be even better than tungsten. Operating the pendulum in a high 
vacuum, as demanded by other considerations, should help to prevent ageing 
effects. 

(b) Dissipation 

B.P.T.'s analysis is based on the use of a free pendulum in vacuo, for which a 
decay time as large as 1 year has been demonstrated. This places especially great 
demands on isotropy because the factor of improvement, 1 +  1/4y2, in (17), 
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conferred by parametric amplification is lacking. There is no simple way, however, 
of capturing this advantage without disturbing the precession rate. One might, for 
example, use air damping to enhance y, but the air will be a t  rest in the laboratory 
frame. As seen by an outside observer, an ideal pendulum a t  one of the Poles 
swings in an unchanging plane while the air rotates once in a day. Let us examine 
the behaviour of a free pendulum in a viscous fluid rotating a t  angular velocity 
-Q, on the assumption that the drag force is -kv, where v is the velocity of the 
bob. I n  addition to the damping of the vibration, with time constant 7, = 2m/k, 
there is a lateral force which, for a vibration described by ( I ) ,  has components 

Fa, = kQb and FbC= kQu. (18) 

This produces no precession but, as (4)shows, causes the axial ratio to change 
a t  a rate 

6 z -kQ/2mw = --Q/wr,. (19) 

Anharmonicity then introduces precession as a secondary consequence, and 
according to (7), 

Q, = -312u2/8Z27,. (20) 

Because the T.L. precession is 6 x 10-1°12, a free 8.5 m pendulum with the optimal 
a l l  ratio of & needs 7, > 1.7x lo5years if the spurious precession is not to overtake 
i t  in the course of a year. In  principle the effect may be allowed for, but the 
precision to which 7, would need to be known is formidable. 

Parametric amplification, although it controls the growth of the minor axis, 
gives us no significant amelioration, because i t  depends on 7, being fairly short. It 
causes the growth given by (20) to saturate after about time 7, a t  a value rather 
less than 3Qu2/8Z2, say lo5 tipes the T.L. rate. 

Because we have here a most serious obstacle to the measurement i t  is worth 
considering how it  might be countered. Turning the dissipative medium, including 
the suspension (which provides some dissipation, albeit small) in synchronism 
with the pendulum's precession has already been discussed by B.P.T., and rejected 
because it allows the accumulation of effects due to anisotropy. I n  principle, 
however, the medium may be rocked back and forth through a very small angle 
a t  twice the pendulum frequency so as to stay in the same mean position, thus 
avoiding cumulative errors, yet produce no dissipative expansion of the minor 
axis. Thus, if Q in (18) is replaced by Q(1-2 cos 2wt) the significant perturbation, 
F,,,has no fundamental Fourier coefficient. In  laboratory coordinates the dis- 
sipative medium must be carried forward a t  twice the Foucault angular velocity 
when the pendulum is a t  the ends of its swing, and backward a t  the same rate as 
it passes through the centre. The linear displacement a t  radius r needed for 
compensation by this means is (r/N) sin (Zwt),  less than & mm a t  a radius of 1 m, 
but possibly capable of being adjusted more precisely than 7, can be measured. 

The exact magnitude of rocking needed depends on how the retarding force is 
related to the relative velocity of the medium and the bob, which may not be 
strictly proportional as assumed in this analysis. By evacuating the pendulum 
chamber, however, and providing the bob with a magnet that excites Foucault 
eddy currents in an underlying conducting sheet, strictly linear dissipation may be 
achieved. One may improve on this by adopting the ingenious device (Mastner 
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et al. 1984)of cutting a circular hole in the conducting sheet, so that eddy current 
drag is confined to the intervals when the pendulum is near its greatest 
displacement. Then motion along the major axis is slow and is dissipated 
considerably less than motion along the minor axis which is a t  its maximum. This 
highly dependable mechanism enhances the benefits of parametric excitation in 
keeping b small. The rocking motion appropriate here is one that  follows the 
Foucault precession exactly while the bob lies over the conductor, and reverses the 
displacement, as rapidly as desired, while it goes through the centre, well away 
from the conductor. 

If the effective radius of the hole is r,, so that there is no drag when x < r, and 
full drag when x > r,, evaluation of the fundamental Fourier coefficient of the 
drag force shows that the attenuation of motion in the x-direction, compared with 
that for a complete sheet, is multiplied by 9-$ sin 29, where cosd = r,/a; the 
corresponding factor for motion in the y-direction is 9+isin29. The time- 
constants from this cause alone are thus in the ratio 

T,/T, = ($9.; sin 29) / (9+i  sin 29). 

Given adequate control of the pendulum amplitude, one should be able to 
maintain r,/a a t  0.95, so that T,/T, z&. With modern permanent magnets 
swinging a few millimetres above the thick copper plate, T, can be reduced to 
1-2 min without making excessive demands on parametric amplification. Then 
the residual dissipation, not following the Foucault precession, does not cause 
steady growth of e according to (19), but instead e saturates a t  a value 
-QT,/wT,,,; T,,, here is the time-constant for the residual dissipation alone. From 
(7) the secondary precession is then seen to be given by 

equal to the T.L. rate if a l l  = 1.6x lop2 (the optimum for l = 8.5 m) and 
T, = 6 x 10-6~4.With T, = 3 min and T,,, = 1 year this is achieved. 

To reach this condition, the minor axis of the elliptical orbit must be maintained 
a t  less than which is a rather more severe demand than B.P.T. contemplate, 
but may be within the bounds of possibility to detect and correct. It may be 
remarked that altering the oscillation amplitude of the conductive sheet provides 
an easier mechanism than their suggested use of adjustable gravitational forces for 
maintaining e below the permissible limit. Nevertheless, to rock the conductive 
sheet a t  precisely the right amplitude is a daunting technical challenge. 

(c) Noise 

B.P.T. quote figures for seismic activity a t  the South Pole that show that even 
a t  this exceptionally quiet spot it would be necessary to provide efficient anti- 
seismic mounting if the T.L. precession were not to be swamped by random drift. 
It should be noted that their expression includes only the direct effect, and 
neglects secondary precession resulting from any orbital ellipticity that noise may 
produce. The ratio of these effects is easily calculated by considering two possible 

t 1 A = 10-lom = lo-' nm. 
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disturbances to a pendulum with c = 0, by an impulsive force applied normal to 
the line of motion. If an impulse P strikes the bob as i t  passes through the centre 
a transverse velocity v, = P l m  is added to the principal velocity v, = wu, turning 
the plane of vibration through 64, = Plmwu; this is the direct effect. If, however, 
the impulse strikes the bob a t  the end of its swing the x and y motions are in 
quadrature and the orbit is rendered elliptical without being turned. Because 
Plmwu now expresses the initial value of e the pendulum precesses according to (7) 
for so long as it takes e to decay, i.e. for time 7' as in ( l l ) ,and the total precession 
angle resulting from this impulse is a#,, where 

For the 2.3 m free pendulum considered by B.P.T., with 7' so long that it must be 
replaced by their suggested observation time of 60 days, S#, -- 2000 S#, ; instead 
of the improvement by a factor 2 x lo4that they require of their seismic isolation, 
something like 4 x lo7 is needed unless there is to be continuous monitoring and 
correction of the ellipticity. With the use of conductive damping 64, is made 
negligible, and their specification, already severe enough, is adequate. 

C O N C L U S I O N  
The bold proposal by B.P.T. to use a Foucault pendulum a t  the South Pole as 

a test of General Relativity was presented by them as extremely difficult but not 
unrealizable. The above analysis indicates that the neglect of certain disturbing 
influences puts their proposal, as stated, out of court. On the other hand, the use 
of parametric excitation and a conductive damping plate appears to restore to the 
situation something like its 'original assessment, i.e. an experiment that a 
superlatively skilled and patient instrument designer might succeed with. Lest, 
however, any such a one is tempted to engage in so demanding a project, he should 
ask himself what would happen if he obtained a null result or one differing to some 
minor degree from the T.L. expression. In  view of the large number of disturbing 
factors to be allowed for, and the absence of any test sites, a t  least on Earth, where 
a range of different results could provide corroboration, the response of 
conservative relativists could not be other than sceptical. The necessary 
expenditure of time, skill and money should therefore only be incurred for the 
delight of meeting a challenge, rather than in hope of glory. 

I am indebted to Dr D. W. Dewhirst who provided obscure references to early 
studies of the Foucault pendulum. 

After this paper was submitted, Professor Kip Thorne kindly sent me his 
detailed comments, with helpful suggestions for minor changes. He feels, and I 
hope he is right, that my assessment of the original B.P.T. proposal is over- 
pessimistic ; a t  least we agree about its extreme difficulty. I am glad to concur with 
his view that if the T.L. effect is thought to be worth the inevitably large outlay 
used to verify it, the Foucault pendulum may well prove the least expensive way 
of achieving a given degree of precision and credibility. 
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